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Abstract

In continuous wave (CW) electron paramagnetic resonance imaging (EPRI), high quality of reconstructed image along with fast and
reliable data acquisition is highly desirable for many biological applications. An accurate representation of uniform distribution of pro-
jection data is necessary to ensure high reconstruction quality. The current techniques for data acquisition suffer from nonuniformities or
local anisotropies in the distribution of projection data and present a poor approximation of a true uniform and isotropic distribution. In
this work, we have implemented a technique based on Quasi-Monte Carlo method to acquire projections with more uniform and iso-
tropic distribution of data over a 3D acquisition space. The proposed technique exhibits improvements in the reconstruction quality
in terms of both mean-square-error and visual judgment. The effectiveness of the suggested technique is demonstrated using computer
simulations and 3D EPRI experiments. The technique is robust and exhibits consistent performance for different object configurations

and orientations.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Electron paramagnetic resonance imaging (EPRI) is a
noninvasive technique that is capable of mapping the dis-
tribution of unpaired electrons [1,2]. It has a distinct
advantage in many medical applications [3-5] where it
can be used for the direct measurement of both endogenous
and introduced free radicals which carry unpaired elec-
trons. In the past few years, the potential applications of
EPRI to studies of living biological systems have been rec-
ognized [6-9]. Despite all the progress made in the last two
decades, the acquisition of high quality images of biologi-
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cal samples has been limited by several technical factors
including resolution, sensitivity, and speed of data acquisi-
tion [10,11].

Most of the EPR experiments are conducted in continu-
ous wave (CW) domain as the technical challenges associ-
ated with pulsed EPR [12] limit its broad use. In CW
EPRI, the data are acquired in the form of projections
[13], and filtered backprojection (FBP) [14] or Fourier
based reconstruction techniques [15] are commonly used
to reconstruct the image from the acquired projections.
Quality of the reconstructed image depends on a number
of factors such as number of acquired projections, sensitiv-
ity of the system, signal to noise ratio, field homogeneity,
and linewidth of the paramagnetic species under study. In
general, the reconstruction quality can be improved by
acquiring a large number of projections. This, however, is
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not an attractive solution because projection acquisition
can be a time consuming process [16], e.g., it may take sev-
eral seconds to acquire a projection. Hence, increasing the
number of acquired projections beyond a certain limit may
not be practical especially for biological applications. Con-
sequently, it is highly desirable to improve the reconstruc-
tion quality without acquiring further projections.

One important parameter to ensure an improved quality
of the reconstructed image is the distribution of acquired
projection data. Adaptive acquisition techniques have been
proposed [17,18] to acquire a set of nonuniformly distribut-
ed projections which capture more vital and distinct infor-
mation and hence result in reduced acquisition time.
Although, the adaptive techniques tend to converge faster
(generate lower mean-square-error (MSE) for same num-
ber of projections) than the uniform acquisition techniques,
they are not suited to preserve weak signal [19]. Further-
more, the performance of the adaptive techniques is con-
tent dependant and suited mostly for objects with highly
anisotropic configurations. The performance of the uni-
form acquisition techniques, on the other hand, tends to
be more robust and content independent. The calculation
of a uniform distribution of projections for 2D imaging is
a trivial problem, but for 3D cases, the estimation of a uni-
form distribution of projections (gradient directions) is
more complicated. The previously proposed uniform
acquisition technique [17,20] offers an improvement over
the conventional method of acquiring projections on a lat-
itude-longitude grid by saving approximately 30% of the
acquisition time, but it is still not an accurate approxima-
tion of a true uniform distribution of the gradient direc-
tions. In this work, we have shown that the
reconstruction quality can be improved by adopting a more
accurate representation of the uniform distribution of the
projection data. The technique (for uniform distribution)
described in this paper is based on a Quasi-Monte Carlo
(QMC) method [21]. Such techniques have been frequently
applied to simulate the behavior of various stochastic pro-
cesses. Although the technique is explained for 3D spatial
imaging, it can be readily extended to 3D spectral-spatial
imaging. Extension of the suggested technique for 4D spec-
tral-spatial imaging is not straight forward and will be
reported separately.

2. Theory

In CW EPRI, the data are collected in the form of pro-
jections. A projection is acquired by measuring the absorp-
tion signal as a function of magnetic field in the presence of
a static gradient. The orientation of the acquired projection
is determined by the direction of the magnetic field gradient
which is a vector sum of three independent and mutually
orthogonal field gradients in the x, y, and z directions.
The 3D Radon transform [13] of an object f{x,y,z) is
expressed as:

p(r,0,9) 2/_ /_ /_ f(x,9,2)d(xsin ¢ cos 0
+ ysin¢sinf 4 zcos ¢ — r)dxdydz (1)

where p(r,0,¢) represents an acquired projection along
orientation defined by spherical coordinates 6, ¢, and r.
The distribution of 6 and ¢ determines the distribution of
projection data over the surface of a 3D sphere.

Once a sufficient number of projections are acquired, the
image can be reconstructed by the FBP method. The FBP
method requires that the gradient directions for the
acquired projections are uniformly distributed over the
3D spatial domain. If the projections are not uniformly dis-
tributed, an appropriate weighting factor is used to validate
the use of the FBP which is based on inverse Radon
transform.

n/2 2n
f(x,y,z):/ / pr(xsin ¢ cos 0 + ysin ¢ sin 6
0 0

+zcos ¢, 0, ¢)sin pdbdd (2)
where pr represents filtered projection.
1 &p(r,0,9)
Pf(’ﬂ&@*‘@T (3)

For a limited number of projections Eq. (2) can be approx-
imated numerically by selecting a suitable distribution of
sampling points.

1 n
g [ . ) 91- . Qi 91-
f(x,»,2) ” pr(x sin ¢, cos 6; + ysin ¢, sin

i=1

+zcos ¢;, 0;, ;) - wi 4)

where w; the weight associated with the ith projection. The
error of approximation (f — 7 ) depends on the number of
projections (n) and the distribution of the projections. Gen-
erally, a projection distribution which is more uniform over
the sphere surface results in smaller approximation errors
because there is a connection between better uniformity
of data distribution and more accurate integration [22].

2.1. Equal linear angle sampling

For the traditional acquisition technique where 0 and ¢
are arranged on a latitude-longitude grid as shown in
Fig. 1A, reconstruction from a limited number of projec-
tions is described by Eq. (5).

- o &L 1
Fleyz) =T D sin(mAg) ¢

M=1 N s
weighting

X zK:pf(x sin(mA¢) cos(kAD)

=1
+ ysin(mA¢) sin(kA0)
+ zcos(mA¢), kAO, mAP) (5)
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Fig. 1. Effect of dislocating the gradient directions from a latitude-longitude grid on the reconstruction quality. A 3D Shepp-Logan phantom constructed
by stacking (along z-axis) 2D Shepp-Logan phantom of size 64 x 64. (A) Distribution of 225 projections over a hemisphere using equal linear angle
acquisition with A0 = A¢ = n/15. All the projections corresponding to ¢ = 0 are identical regardless of the 0 value. In order to avoid the acquisition of
these identical projections, the angle ¢ is started from A¢/2 instead of 0. It should also be noted that the projections corresponding to ¢ = /2 are only
acquired for 6 € [0, 7) since the symmetry of the projection data ensures that the other half (6 € [r,2n)) is covered automatically. (B) Distribution of 225
projections after equal linear angle distribution given in (A) is modified by choosing a different set of azimuth angles for each iteration of mA¢ so that

projection distribution does not follow the rigid latitude-longitude grid. (C) Center slice of image reconstructed using distribution given in (

A). (D) Center

slice of image reconstructed using distribution given in (B). From (C) to (D), there is a visible reduction in the reconstruction artifacts suggesting that the
isotropy of the data distribution results in an improved reconstruction quality.

An equal increment of 0 and ¢ results in a nonuniform dis-
tribution of the data over the surface of the 3D sphere. The
acquired data are highly concentrated near the poles and
get sparse as we move towards the equator. The weighting
term sin(mA¢)/K in Eq. (5) compensates for the nonuni-
form data distribution. As a result, the impact of a projec-
tion, which is near the pole (¢~0), on the reconstruction is
reduced. Since a projection near the pole requires the same
amount of acquisition time as a projection near the equa-
tor, reducing the weighting of the projections near the pole
results in the loss of data acquisition efficiency. In addition,
sampling of data on a rigid latitude—longitude grid can lead
to more pronounced reconstruction artifacts, because in
such cases artifacts from various projections may get added
constructively, which may have a degrading effect on the
reconstruction quality. An improvement in the reconstruc-
tion quality can be achieved by dislocating the data points
from the latitude-longitude grid which can be achieved by
starting each iteration of ¢ from a different azimuth angle
as shown in Fig. 1B. Even though the data points are still

concentrated near the poles, a more isotropic coverage of
3D space is achieved by picking nonoverlapping sets of 0
for each iteration of ¢. Visual inspection of the simulation
results presented in Fig. 1C and D illustrate that introduc-
ing a jitter in the angular distribution of the data can lower
the reconstruction artifacts.

2.2. Equal solid angle sampling

A distribution based on equal solid angle approximation
is shown in Fig. 2A. Since solid angle associated with gra-
dient direction is proportional to A¢ x Af X sin(¢), equal
solid angle span [20] can be approximated by keeping A¢
constant and incrementing A6 for each latitude ring in pro-
portion to 1/sin(¢). This way, the number of azimuth sam-
ples for each ¢ is determined as:

K,, =round(K sin(mAd¢)) (6)

where K is a constant that determines the total number of
projections.
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Fig. 2. Distribution of gradient directions: (A) 229 projection directions distributed using equal solid angle scheme, (B) 225 projection directions

distributed using the suggested QMC-based acquisition technique.

Therefore, as ¢ decreases (near the poles), the number of
points also decreases accordingly which results in a
more uniform distribution of the gradient directions.
Consequently, for equal solid angle sampling Eq. (5) can
be modified as:

- e M
Fley2) =22 sin(mAd)

m=1 \ ",
weighting

X pr xsin(mAg¢) cos 6

=1
+ ysin(mAg) sin 0,
+ zcos(mA¢), O, mAd) (7)

As sin(mAg)/K,,~1/K, therefore from Eq. (7) it is evident
that all the projections are weighted almost equally which
results in an efficient data acquisition. Although the overall
distribution of the gradient directions is more uniform as
compared to the acquisition over a latitude-longitude grid,
it still suffers from local anisotropies. Since the data distri-
bution follows a pattern, it may exaggerate the reconstruc-
tion artifacts depending on the object configuration.

2.3. QMC-based sampling

QMC-based methods are often used in the numerical
analysis for the computation of multidimensional integrals
by using low-discrepancy sequences [23]. This is in contrast
to a regular Monte Carlo (MC) method which is based on
the sequences of random or pseudorandom numbers. It has
been shown that QMC-based distributions provide a better
uniformity of data points than MC-based techniques [24].
Data uniformity is usually measured in terms of star dis-
crepancy [25]. If ¥ = {v,},~, is an infinite sequence of
points in the interval [0,1) and ¥y denotes the finite subse-

quence {v,,}n |» star discrepancy, for each N, is defined as:
Vyn[0,b
Dy(r) = sup [P0, 8
0<b<1 N

where N is the number of data points and sup|e| represents
supremum [26].

The sequence V is uniformly distributed in [0, 1) if and
only if limy_,., Dy (¥) = 0. In this work, we are interested
in sequences for which Dy}, (¥) is small for all V. It has been
shown [27] that for low-discrepancy sequences the star
discrepancy is bounded:

(In N)d]

DY) < €| o

where d is the dimension in which the points of V' lie and C
is a constant that depends on d.

In QMC-based methods, since the samples are generated
from a deterministic formula, they exhibit certain regulari-
ty properties of the distribution which is described by their
discrepancy. As a result, these methods have leverage over
MC methods in the sense that the bounds over the error
magnitude are deterministic [21]. There are several algo-
rithms available to generate low-discrepancy sequences
[21]. In this work, we present a technique that is based
on two successive Fibonacci numbers. Similar techniques
have been presented before [28-30] for other applications.
For the numerical integration on a sphere surface, there
is a distinct advantage of using an oblique array of sam-
pling points based on a chosen pair of successive Fibonacci
numbers [31]. The pattern has a familiar appearance of
intersecting spirals, avoiding the local anisotropy of a con-
ventional latitude-longitude array which may result in
enhanced reconstruction artifacts due to the coherent inter-
action between the data points.

For a high quality 3D reconstruction of the projection
data, we are interested in a distribution of points on the
surface of the hemisphere that is more uniform. The joint
probability density function (p.d.f.) [32] of random
variables and is given as:

ho.o(0,9) = |50 fin (10

The corresponding stochastic representation follows
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02210, (11)
d=arccos(1 — U,) (12)

where U, and U, represent uniform random variables in
[0,1). It is the mechanism of selecting 6 and ¢ that distin-
guishes QMC from MC method. For MC simulation of
the data distribution, the points are selected randomly for
U, and U,. For QMC, the selection of 0 and ¢ is determin-
istic and is based on two successive Fibonacci numbers.
Pseudocode for generating uniformly distributed points,
from two successive Fibonacci numbers, over the hemi-
sphere surface is given by Eqgs. (13)—(17). Fig. 2B shows
the distribution of 225 points generated using the QMC-
based algorithm over a hemisphere. Once the projection
are acquired along these orientations (0 and ¢), the inverse
Radon transform is applied to reconstruct a 3D image in a
single stage, in which all the acquired projections are fil-
tered and then back-projected directly on to the 3D image
space.

M= f; (13)
where f; represents kth term of the Fibonacci sequence.
N =fin (14)
0=1:N (15)
N —mod(0 x M,N
¢ :arcc0s< mod(0 x M, )> (16)
N
0 :%27: (17)

For an accurate distribution of the projection data, it is
desirable for N and M to be successive Fibonacci numbers
because of the strong irrationality of the inverse golden ra-
tio (v/5—1)/2, but it may restrict us from acquiring an
arbitrary number of projections. This limitation can be re-
laxed by choosing N and M which are not necessarily Fibo-
nacci numbers as long their ratio N/M stays close to the
golden ratio. This approximation, however, may introduce
discrepancy in the distribution of the projection data. Fur-
thermore, the proposed algorithm does not take into ac-
count that 3D EPRI data is acquired over a hemisphere
as opposed to a sphere since the symmetry ensures that
the data on other hemisphere is acquired automatically.
As a result, the QMC-based acquisition may introduce
nonuniformity in the distribution of data along the junc-
tion of hemispheres. Fortunately, such discrepancies are
limited in extent and do not have profound effects on the
reconstruction quality, and therefore can be ignored if
there are sufficient projections. Such nonuniformity in the
distribution of the data, nevertheless, can be suppressed
by applying a density compensation scheme, such as Voro-
noi diagram [33], where each projection is assigned a
weight depending on its spherical distance from the neigh-
boring projections.

The Voronoi diagrams are frequently used to segment a
Euclidean space by determining the distances to a discrete

set of points. Recently, the Voronoi diagrams have been
used in MRI for density compensation [34] of the non-
Cartesian k-space sampling such as spiral or radial. The
non-Cartesian k-space sampling has an undesired property
of nonuniform distribution of data over the k-space. The
Voronoi diagram segments the k-space into convex poly-
gons such that each polygon encloses only one data point,
and all the points in the polygon are closer to the data
point enclosed by the polygon than any other data point.
The size of the each polygon can be used as the weight
for the data point enclosed by the polygon. The same
approach is applied here to calculate the weighting of the
individual projections by calculating the Voronoi diagram
over the surface of a sphere [35]. To accomplish that, the
entire surface of the sphere is covered uniformly with the
points selected using equal solid angle distribution. For
accurate results, the number of points should be at least
two orders of magnitude larger than the number of data
points (projections). Now each of these uniformly distrib-
uted points is assigned to its closest (in terms of spherical
distance) projection. Consequently, the relative weight of
each projection equals the number of points assigned to
it. These calculated weights for the projections are then
normalized so that the average weight is one.

3. Results
3.1. Simulations

To demonstrate the performance of the QMC-based iso-
tropic distribution, the reconstruction results from the
three acquisition techniques are compared using a digital
phantom of size 64 x 64 x 64. The phantom consisted of
six torus-shaped configurations. The red color tori repre-
sent a normalized intensity of 1, while the yellow and the
blue tori represent normalized intensities of 0.7 and 0.4,
respectively. The reconstruction was performed for three
orthogonal orientations of the phantom as shown in
Fig. 3A. These orientations were achieved digitally by a
90° change in elevation angle (Fig. 3A, second column) fol-
lowed by a 90° change in azimuth angle (Fig. 3A, third col-
umn). The imaging parameters were chosen to simulate
EPRI experiments at L-band (1.2 GHz). All the simula-
tions were performed using our EPRI simulation program
written in Matlab (Mathworks, Massachusetts, USA). The
imaging parameters in the simulation were as follows: field
of view, 1.2 x 1.2 x 1.2 cm?; sweep width, 12 G; data points
per projection, 120; gradient strength, 10 G/cm; width of
Lorentzian lineshape, 300 mG. To simulate the experimen-
tal setup, deconvolution was performed on each projection
using a Hanning window whose width was chosen
empirically.

Fig. 3B, C, and D shows the reconstructed images for
the three given phantom orientations using equal linear
angle acquisition, equal solid angle acquisition, and the
QMC-based angle selection, respectively, with 225 projec-
tions. The voxels with signal intensity less than 25% of
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Fig. 3. Reconstruction results of a simulated phantom using the three acquisition techniques for three orthogonal orientations of a phantom (see text for
the description of the phantom). (A) Three orthogonal orientations of the simulated phantom which consists of six torus-shaped objects. (B)
Reconstruction of (A) based on equal linear angle acquisition with 225 projections. (C) Reconstruction of (A) based on equal solid angle acquisition with
229 projections. (D) Reconstruction of (A) using the QMC-based acquisition with 225 projections. For proper display, voxels with intensity less than the
25% of the peak intensity of the reconstructed image were set to zero. In addition, all the reconstructed images were cropped from the center for better

visualization.

the maximum intensity of the reconstructed image were set
to zero. The results presented in Fig. 3 suggest that the iso-
tropic distribution of the data for the QMC-based tech-
nique translates to a performance which is more
consistent, predictable, and content independent. On the
other hand, the performances of equal linear angle incre-
ment and equal solid angle increment techniques are more

content dependant, e.g., the reconstruction based on equal
solid angle acquisition generates reasonable results for the
first orientation of the phantom (first column of Fig. 3C)
while the reconstruction of same phantom, for identical
imaging parameters, suffers from enhanced reconstruction
artifacts for the second orientation (second column of
Fig. 3C). Moreover, Fig. 4 shows that the QMC-based
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Fig. 4. MSE convergence for the three acquisition techniques. Number of
projections vs. MSE for the phantom orientation shown in: (A) first
column of Fig. 3A, (B) second column of Fig. 3A, and (C) third column of
Fig. 3A. Here, ELA, ESA, and QMC stand for equal linear angle, equal
solid angle, and the Quasi-Monte Carlo based acquisition, respectively.

method generates lower MSE as compared to other two
acquisition techniques for same number of acquired projec-
tions. For simplicity we have used MSE, along with the
visual judgment, as a figure of merit. It should be noted
that although MSE is commonly used to quantify the over-
all reconstruction quality, it may not express all aspects of
the reconstruction quality such as spatial resolution or
maximum error.

3.2. EPRI experiment

For validation of the technique, an experimental phan-
tom was constructed with 21 capillary tubes arranged in
3 rows and 7 columns as shown in Fig. 5. Each capillary
tube had an inner diameter of 0.9 mm and an outer diam-
eter of 1.4 mm. The tubes were filled to a height of 10 mm
with Triarylmethyl radical TAM (0.7 mM) dissolved in
PBS (phosphate buffer saline). Overall sample dimensions
were 4.2 mm X 9.8 mm X 10 mm.

The phantom was imaged on an L-band (1.2 GHz)
EPRI system with a volume resonator with diameter of
12.57 mm and useable height of 12 mm. Spectrometer

Fig. 5. Experimental phantom used for 3D EPRI experiment. A total of
21 capillary tubes were glued together so that they were arranged on a
7 x 3 grid. Each capillary tube had an inner diameter of 0.9 mm and an
outer diameter of 1.4 mm. A 0.7 mM TAM solution was used to fill each
capillary tube to a height of 10 mm. Sample dimensions were approx-
imately 4.2 mm X 9.8 mm x 10 mm.

settings were: incident microwave power 4 mW, sweep
width 12 G, modulation amplitude 0.15 G, scan time
5.24 s, and gradient strength 6 G/cm. The measured line-
width of the signal was 280 mG. Deconvolution, using
Hanning low-pass window, was applied to individual pro-
jections to improve resolution. The cutoff frequency of the
window was selected empirically. The measured SNR,
defined as the ratio of peak signal amplitude to peak noise
amplitude for the zero-gradient projection was 250. For
each projection, 1024 data points per collected. No correc-
tion for B1 field inhomogeneities [36] was applied. A total
of nine datasets were acquired using the parameter values
listed above such that there were three datasets for each
acquisition technique for three different numbers of projec-
tions. For equal linear angle acquisition, three datasets
were acquired with 169, 256, and 576 projections, for equal
solid angle acquisition, three datasets were acquired with
163, 254, and 499 projections, and for the QMC-based
acquisition, three datasets were acquired with 165, 254,
and 497 projections.

The reconstruction results from the three acquisition
techniques, presented in Fig. 6, suggest an improvement
in the reconstruction quality for the QMC-based acquisi-
tion technique. The reference image to calculate MSE
was constructed from 1124 projections acquired using
equal solid angle acquisition. The QMC-based acquisition
technique generates lower MSE than other two acquisition
techniques and gives consistent performance for different
number of projections. On the other hand, the reconstruc-
tions based on the equal linear angle and equal solid angle
techniques exhibit artifacts depending on the data distribu-
tion for a given object configuration. Depending on the
configuration of the object, the more informative projec-
tions may be localized to a certain range of 0 and ¢. Both
equal linear angle and equal solid angle based acquisitions
have the tendency to skip that range of orientations alto-
gether because of the large structured gaps in the data dis-
tribution. As a result, the performances of these techniques
are hard to predict for arbitrary-shaped objects. For
instance, an increase in the number of acquired projections
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Fig. 6. Reconstruction results for 3D EPRI of the capillary tubes phantom (shown in Fig. 5) to evaluate the performance of three different acquisition
techniques. The measurements were performed on an L-band (1.2 GHz) EPRI system. Reconstruction results based on: (A) equal linear angle acquisition,
(B) equal solid angle acquisition, and (C) the QMC-based acquisition for three different numbers of projections. Top 10% of the tubes were cropped for
better visualization. Voxels with intensity less than the 25% of the peak intensity of the reconstructed image were set to zero.

may result in further deterioration of the reconstruction
quality if the corresponding projections do not capture
the vital orientations that were initially covered by fewer
projections. This may also explain the degradation in the
image quality for equal linear angle and equal solid angle
acquisition in Fig. 6A and B for the first two columns.
On the other hand, the isotropic distribution of the projec-
tion data for QMC-based sampling is less susceptible to the
mismatch of the sampling pattern and the orientations of
the more informative projections.

4. Discussion

A uniform isotropic coverage of 3D projection space is
important for an optimized reconstruction quality. A poor
approximation of the uniform distribution, on the other
hand, may result in pronounced artifacts in the recon-
structed image which may degrade the reconstruction qual-
ity to an unacceptable level. Although, equal solid angle
acquisition provides an improvement over equal linear

angle acquisition, it still suffers from local anisotropies in
the distribution of gradient directions which may manifest
themselves as enhanced artifacts in the reconstructed
image. Both the simulations and the EPRI results indicate
that the QMC-based uniform distribution of the gradient
directions results in an improved image quality in terms
of both MSE and visual inspection.

For the simulation data, the performance of the pre-exist-
ing data acquisition techniques, for identical imaging param-
eters, varies considerably for different orientations of the
input phantom which implies that depending on the config-
uration, these techniques may require extra projections to
generate similar reconstruction quality. On the other hand,
the performance of the QMC-based technique is more con-
sistent and independent of the phantom orientation. Visual
inspection also reveals that the images reconstructed using
the suggested acquisition technique exhibit lesser artifacts
which in turn is effective in preserving the weak signal (blue
tori). In addition, the suggested acquisition technique gener-
ates considerably lower MSE (Fig. 4) for all three orienta-
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tions, and the difference is substantial especially at lower
number projections. Likewise, the results from 3D EPRI
experiment show that the reconstruction quality can be
improved by acquiring the projections using the QMC-based
acquisition. Fig. 6 demonstrates that the reconstruction
from the proposed acquisition technique exhibits lesser arti-
facts and generates lower MSE. For example, the MSE for
the QMC-based technique with 165 projections is lower than
the MSE generated by the other two acquisition techniques
with more than 250 projections. The computation cost of
the techniqueislow, e.g., in Matlab it takes couple of seconds
to find an array of uniformly distributed gradient directions
for 1000 projections.

5. Conclusions

A QMC-based technique is suggested for a better
approximation of the uniform distribution of projection
data. The performance of the technique is compared to
the existing techniques using both the computer simula-
tions and the data from EPRI experiment. The results
suggest an improvement, both qualitatively and quantita-
tively, in the reconstruction quality for the acquisition
based on the suggested technique. Moreover, the perfor-
mance of the QMC-based technique is more consistent
and predictable. The technique is presented for 3D spa-
tial imaging and can be extended to 3D spectral-spatial
imaging.
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